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• static model of the 1st and 2nd ray

• only guilty for the push off
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Segmental reference System

•• Vicon 250 (50Hz)Vicon 250 (50Hz)

•• 5 Cameras5 Cameras

•• unilateralunilateral
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Methods

Dynamic pressure measurement

• 4 Sensors per square cm

• 50 Hz

• Second step method, 5 trials

• Gait velocity choosen freely
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Dynamic Pressure Measurement

• Standardised mask with 12 areas

• Forces were normalized to the body 
weight. Body weight = 100%

• Time normalization 

> Each step is divided into 100 
intervals

> Linear interpolation

• 5 trials > in each interval > Median/StDv
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Clinical Example: Metatarsalgia, conservatively Clinical Example: Metatarsalgia, conservatively 
treated without succes  treated without succes  

Distal Hallux Valgus 
Surgery + Weil-

Osteotomy

Case 1Case 1 Case 2Case 2

Distal Hallux 
Valgus Surgery



Gait Analysis Data: Increased Total Force on MTH 2    Gait Analysis Data: Increased Total Force on MTH 2    

Total Force on MTH 2 

Stance Phase

Total Force on MTH 2

Stance Phase

Case 1Case 1 Case 2Case 2

Aim of the computer simulation: 

to decrease patients data (blue line) to the norm
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Shortening of the Phalanx  of 1cmShortening of the Phalanx  of 1cm

Total Force on MTH 2 
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Total Force on MTH 2

Stance Phase

PIP resection not useful                                PIP resection not useful                                PIP resection probably useful          PIP resection probably useful          

Case 1Case 1 Case 2Case 2
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Computer simulated treatement with tenotomy of FDLComputer simulated treatement with tenotomy of FDL

Total Force on MTH 2 

Stance Phase

Total Force on MTH 2

Stance Phase

Tenotomy not usefulTenotomy not useful Tenotomy excellent                            Tenotomy excellent                            

Case 1Case 1 Case 2Case 2
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Shortening of the second metatarsal 
leads not to a significant reduced total 

force on the metatarsal head



1. Is there a correlation between the 
length of the metatarsals and 
increased forces at the metatarsal 
heads



Theoretical Study
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Experimental Study

Finite Element Method
(Space Truss Elements)
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AMTI 3 D Force Plate



AMTI 3 D Force Plate + EMED SF  
Pressure measurement
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Shortening of 1 cm of the metatarsal 2 
leads to an increased force in the 

vertical direction of 4% 



Shortening of 1 cm of the metatarsal 2 
leads to an increased force in the 

vertical direction of 4% 

~ 1% Body Weight (stdv = 7% BW)



The change of the resultant force at 
the second metatarsal head after a 

shortening is not significant and is not 
due to the shortening itself



It is due to the reduced force at the tip 
of the second toe because of 

loosening of toe function after the 
operation



Experimental Study

50 healthy / 50 metatarsalgia



Experimental Study

50 healthy / 50 metatarsalgia

No correlation between length of 
metatarsals and the resultant or 

intraarticular forces



2. Is there a correlation between 
metatarsalgia and increased forces at 
the metatarsal heads



Healthy (n=505) versus Metatarsalgia (n=342)

Ray                1                      2                     3                     4                    5

Max. 
Pressure

External 
Force

Intraart. 
Force

Resultant 
Force

signifcant increasesignifcant decrease
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The Facts

• The resultant forces at the metatarsal heads do 
not correlate with the external forces

• The resultant forces are higher than external 
forces

• Metatarsalgia correlates not with increased 
resultant forces

• The length of metatarsals correlates not with 
increased forces



In Conclusion

We should not believe in orthopedic surgeons 
doctrin we should measure the problem
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